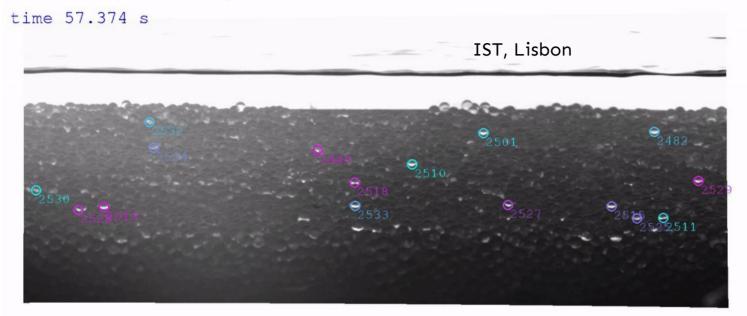
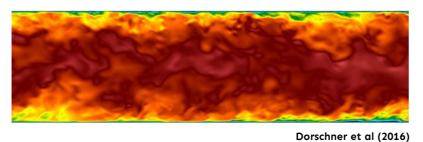


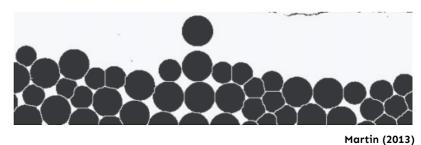
Ch 1. Introduction – bedload transport



Fundamental challenges:



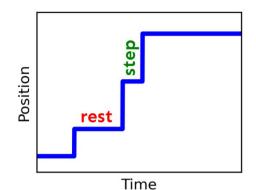
2) Granular surfaces



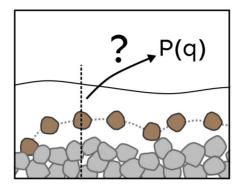
Probabilistic descriptions are suggested

Ch 1. Introduction – Limitations of existing probabilistic approaches

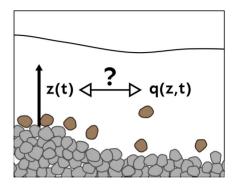
Problems of the thesis:



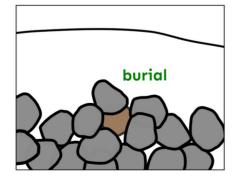
(1) Oversimplified trajectories



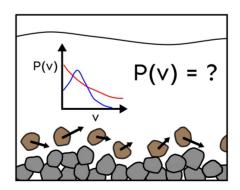
2. Incomplete linkage between particle trajectories and flux



3. Influence of bed elevations is unclear



4. Sediment burial has not been accounted for

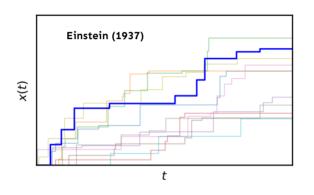


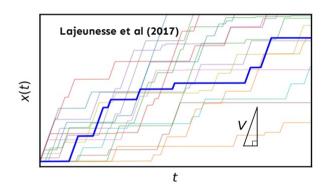
5. Incomplete understanding of particle movement velocities

Ch 2. Mechanistic-stochastic formulation of the bedload flux probability distribution

Problem statement:

Existing particle trajectory models are oversimplified



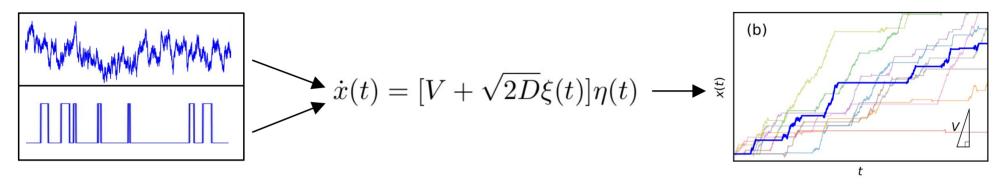


Progress has been extremely slow – clear problems but technical issues

- (a) Improve particle trajectory description to include velocity fluctuations
- (b) Apply this to derive the sediment flux probability distribution

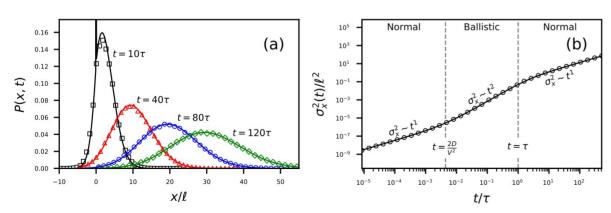
Ch 2. Mechanistic-stochastic formulation of the bedload flux probability distribution (pdf)

Formulation:



Results and Contributions:

(a) Particle dynamics with fluctuating velocities



(b) First calculation of flux pdf from particle dynamics

$$P(q|T) = \sum_{l=0}^{\infty} \frac{\Lambda(T)^{l}}{l!} e^{-\Lambda(T)} \delta(q - \frac{l}{T})$$

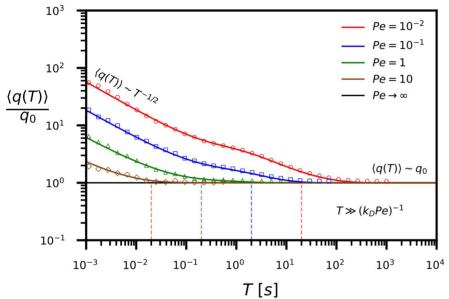
Generalizes Lajeunesse et al (2017)

Generalizes Ancey et al (2020)

Ch 2. Mechanistic-stochastic formulation of the bedload flux probability distribution

Implications:

(a) Sediment fluxes adopt "scale-dependence"

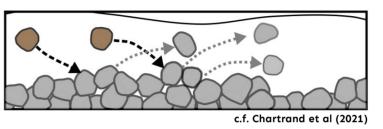


Next steps:

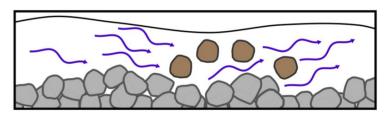
(a) Include interactions/correlations

$$\dot{x}_i(t) = [V + \xi_i(t)]\eta_i(t) + \sum_{i \neq j} F_{ij}(x_i, x_j)$$

- (b) Wide sediment transport fluctuations originate from either
 - i) Interactions between grains, or



ii) Correlations in the turbulent flow



(b) Evaluate repercussions for landscape evolution

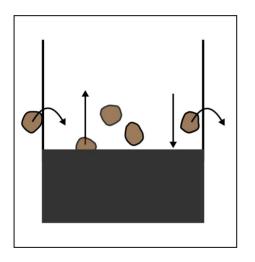
$$(1 - \phi)\frac{\partial z}{\partial t}(\mathbf{x}, t) = -\nabla q(\mathbf{x}, t)$$

Ch 3. Analysis of bed elevations and sediment transport

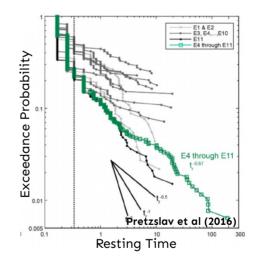
Problem statement:

[Pierce & Hassan (2020) - JGR]

(a) How bed elevation changes impact sediment transport statistics is unknown

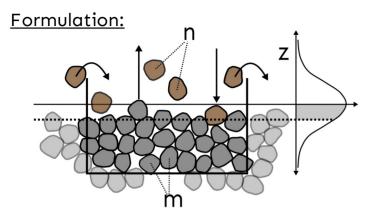


(b) Unclear how to interpret sediment resting times from field measurements



- (a) Incorporate bed elevation changes into a sediment transport model,
- (b) Evaluate their impact on sediment transport, and
- (c) Determine the timescales of sediment burial

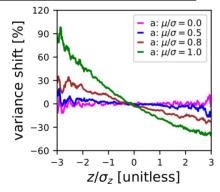
Ch 3. Analysis of bed elevations and sediment transport



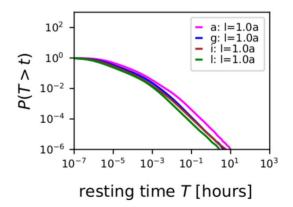
Coupled population model

$$\begin{split} \frac{\partial P}{\partial t}(n,m;t) &= \nu P(n-1,m;t) + [\lambda(m+1) + \mu(n-1)][1 + \kappa(m+1)]P(n-1,m+1;t) \\ &+ \sigma(n+1)[1 - \kappa(m-1)]P(n+1,m-1;t) + \gamma(n+1)P(n+1,m;t) \\ &- \{\nu + \lambda + \mu n(1 + \kappa m) + \sigma n(1 - \kappa m) + \gamma n\}P(n,m;t) \end{split}$$

Results and Contributions:



(a) Bed elevations modify sediment transport characteristics

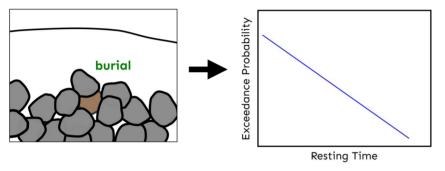


(b) Particles remain buried for power-law distributed timescales

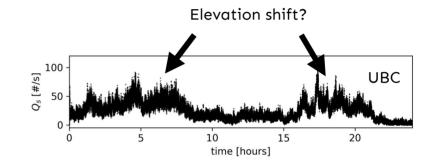
Ch 3. Analysis of bed elevations and sediment transport

Implications:

(a) Sediment burial can account for the power-law rests seen in field data

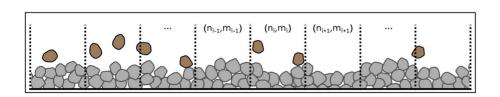


(b) Sediment transport rate distributions are sensitive to local bed elevation adjustments

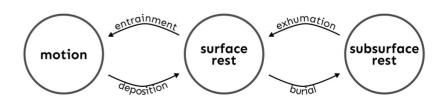


Next steps:

(a) Stochastic morphodynamics



(b) Sediment dispersal when burial occurs

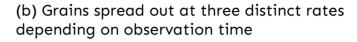


Ch 4. Burial-induced three-range diffusion in bedload sediment transport

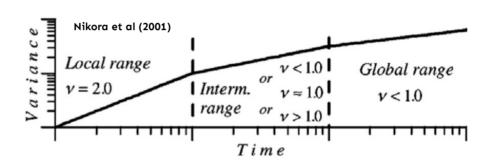
Problem statement:

[Pierce & Hassan (2020) - GRL]

(a) Tracer particles progressively settle into a uniform distribution



Bradley et al (2012)

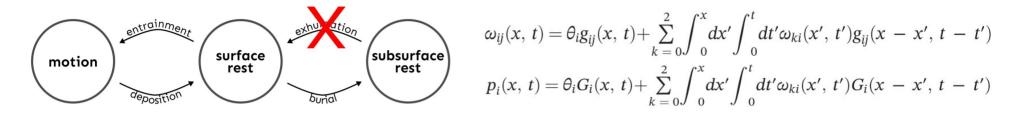


No precise explanation yet for either of these observations

- (a) Formulate the downstream movements of particles with motion/rest/burial
- (b) Explain uniformity & three-range spreading characteristics

Ch 4. Burial-induced three-range diffusion in bedload sediment transport

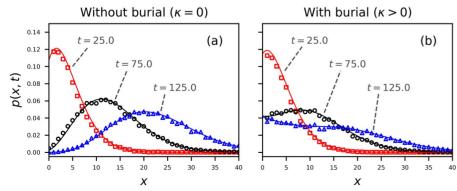
Formulation:



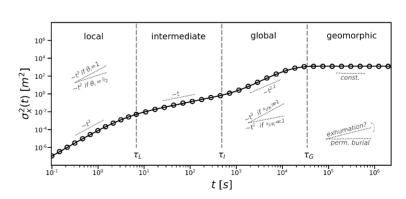
Application of multi-state random walk formalism from Weiss (1994)

Results & contributions:

(a) Derivation of uniform distribution tendency



(b) First description of "three-range diffusion"



Ch 4. Burial-induced three-range diffusion in bedload sediment transport

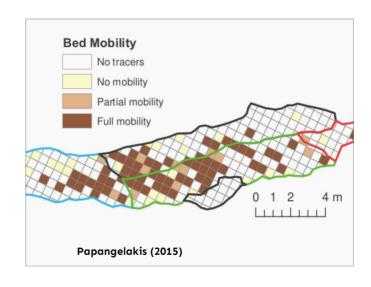
Implications:

(a) Contaminant transport

Next steps:

(a) Incorporate the exhumation process Using the timescales derived in Ch. 2

(b) Understanding tracer movement

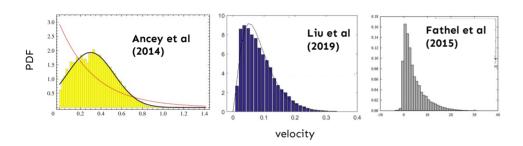


(b) Apply the formalism to back-calculate sediment transport rates from tracer data

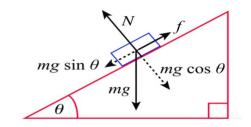
Ch 5. Collisional Langevin description of bedload velocity distributions

Problem statement:

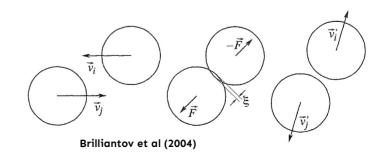
(a) Bedload velocity characteristics lack any comprehensive explanation



(b) Existing models account for collisions in an unrealistic way

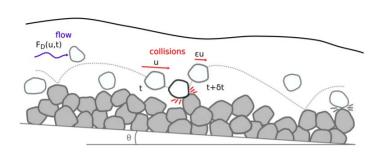


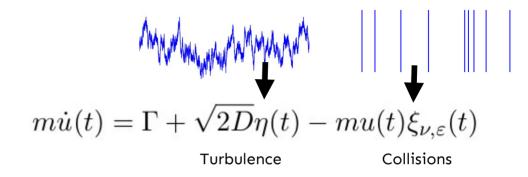
- (a) Formulate grain-scale transport with realistic collision model
- (b) Explain all earlier bedload velocity observations



Ch 5. Collisional Langevin description of bedload velocity distributions

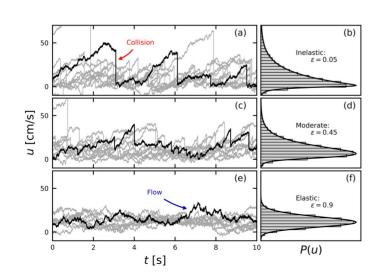
Formulation:





Results and Contributions:

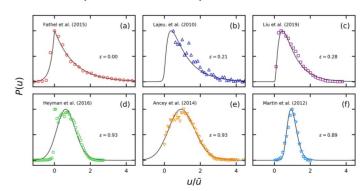
(a) Collisions control velocity pdf shape



(b) Sediment transport is a rarefied granular gas

$$v^{-1}\partial_t P(u,t) = -\Gamma \partial_u P(u,t) + D\partial_u^2 P(u,t) - P(u,t) + \int_0^1 \frac{d\varepsilon}{\varepsilon} P\left(\frac{u}{\varepsilon},t\right) \rho(\varepsilon)$$

(c) Unified explanation of experiments

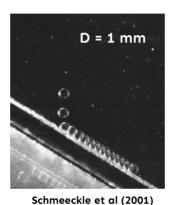


Ch 5. Collisional Langevin description of bedload velocity distributions

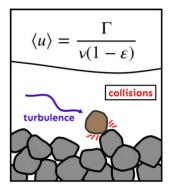
Implications:

(a) Bedrock canyon evolution

(b) Particle size dependence



(c) Sensitivity to collisions, not turbulence



Next steps:

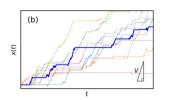
(a) Formulate in 3D

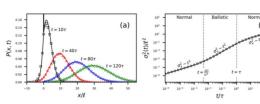
$$m\dot{\mathbf{u}}(t) = \mathbf{F} + D\boldsymbol{\xi}(t) - m\mathbf{u} \otimes \boldsymbol{\eta}$$

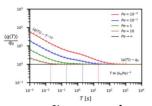
(b) Compare with experiments

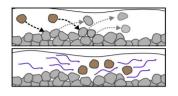
Ch 6. Summary of contributions

Ch 2. Mechanistic-stochastic formulation of the bedload flux probability distribution

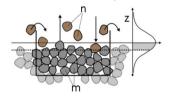


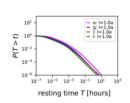




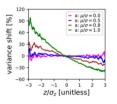


Ch 3. Analysis of bed elevation change and sediment transport fluctuations

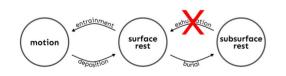


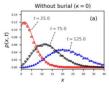


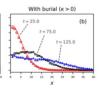
$$\begin{split} \frac{\partial P}{\partial t}(n,m;t) &= \nu P(n-1,m;t) + [\lambda(m+1) + \mu(n-1)][1 + \kappa(m+1)]P(n-1,m+1;t) \\ &+ \sigma(n+1)[1 - \kappa(m-1)]P(n+1,m-1;t) + \gamma(n+1)P(n+1,m;t) \\ &- \{\nu + \lambda + \mu n(1 + \kappa m) + \sigma n(1 - \kappa m) + \gamma n\}P(n,m;t) \end{split}$$

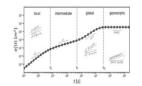


Ch 4. <u>Burial-induced three-range diffusion in sediment transport</u>





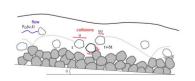


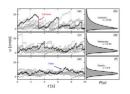


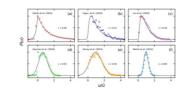
$$\omega_{ij}(x, t) = \theta_i g_{ij}(x, t) + \sum_{k=0}^{2} \int_{0}^{x} dx' \int_{0}^{t} dt' \omega_{ki}(x', t') g_{ij}(x - x', t - t')$$

$$p_i(x, t) = \theta_i G_i(x, t) + \sum_{k=0}^{2} \int_{0}^{x} dx' \int_{0}^{t} dt' \omega_{ki}(x', t') G_i(x - x', t - t')$$

Ch 5. Collisional Langevin description of bedload velocity distributions







$$\begin{split} P(u) &= \frac{\theta(-u)}{K_+} \sum_{l=0}^{\infty} \frac{\varepsilon^{-l} e^{\lambda_+ \varepsilon^{-l} u}}{\prod_{m=1}^{l} (-\tilde{D} \lambda_+^2 \varepsilon^{-2m} + \tilde{\Gamma} \lambda_+ \varepsilon^{-m} + 1)} \\ &\quad + \frac{\theta(u)}{K_-} \sum_{l=0}^{\infty} \frac{\varepsilon^{-l} e^{\lambda_- \varepsilon^{-l} u}}{\prod_{m=1}^{l} (-\tilde{D} \lambda_-^2 \varepsilon^{-2m} + \tilde{\Gamma} \lambda_- \varepsilon^{-m} + 1)} \end{split}$$

Ch 6. The stochastic methodology in Earth science

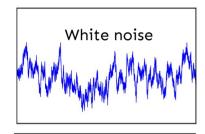
"The development of land forms by erosional and gradational processes still remains largely qualitative. (...) This is probably the result largely of lack of adequate tools with which to work, and these tools must be of two kinds: measuring tools and **operating tools**" (Horton, 1945).

Idealized noises

<u>Langevin models</u>

<u>Master equations</u>

Probabilistic descriptions



Dichotomous noise

$$\dot{u}(t) = -\Delta \operatorname{sgn}(u) + F + \sqrt{2D}\xi(t)$$

$$m\dot{u}(t) = \Gamma + \sqrt{2D}\eta(t) - mu(t)\xi_{\nu,\varepsilon}(t)$$

 $t_r \dot{u}(t) = -(U - u) + \sqrt{2D}\xi(t).$

$$\frac{\partial}{\partial t}P(u,t) = -\Delta \frac{\partial}{\partial u} \Big[\mathrm{sgn}(u) P \Big] + D \frac{\partial^2 P}{\partial u^2}$$

$$\begin{split} v^{-1}\partial_t P(u,t) &= -\Gamma \partial_u P(u,t) + D \partial_u^2 P(u,t) \\ &- P(u,t) + \int_0^1 \frac{d\varepsilon}{\varepsilon} P\bigg(\frac{u}{\varepsilon},t\bigg) \rho(\varepsilon) \end{split}$$

$$\frac{\partial}{\partial t}P(u,t) = -\frac{\partial}{\partial u} \left[\frac{U-u}{t_r} P \right] + \frac{D}{t_r^2} \frac{\partial^2 P}{\partial u^2}$$

$$\left(\partial_t^2 + V \partial_x \partial_t + k_E V \partial_x + k \partial_t\right) P(x, t) = 0$$

$$\dot{x} = V \eta(t)$$

$$\dot{x}(t) = \mu(t).$$
 $(\ell \partial_x \partial_t + k_E \ell \partial_x + \partial_t + k_E \ell \partial_x + k_E$

$$\dot{x}(t) = [V + \sqrt{2D}\xi(t)]\eta(t)$$

$$(\ell \partial_x \partial_t + k_E \ell \partial_x + \partial_t) P(x, t) = 0.$$

$$\begin{split} \partial_t^2 P + V \partial_x \partial_t P + k_E V \partial_x P \\ + k \partial_t P - D \partial_x^2 \partial_t P - k_E D \partial_x^2 P &= 0 \end{split}$$

$$P(u) = \frac{\Delta^2 - F^2}{2\Delta D} \exp\left(-\frac{-\Delta|u| + Fu}{D}\right).$$

$$\begin{split} P(u) &= \frac{\theta(-u)}{K_{+}} \sum_{l=0}^{\infty} \frac{\varepsilon^{-l} e^{\lambda_{+} \varepsilon^{-l} u}}{\prod_{m=1}^{l} (-\tilde{D} \lambda_{+}^{2} \varepsilon^{-2m} + \tilde{\Gamma} \lambda_{+} \varepsilon^{-m} + 1)} \\ &\quad + \frac{\theta(u)}{K_{-}} \sum_{l=0}^{\infty} \frac{\varepsilon^{-l} e^{\lambda_{-} \varepsilon^{-l} u}}{\prod_{m=1}^{l} (-\tilde{D} \lambda_{-}^{2} \varepsilon^{-2m} + \tilde{\Gamma} \lambda_{-} \varepsilon^{-m} + 1)} \end{split}$$

$$P(u) = \sqrt{\frac{t_r}{2\pi D}} \exp\left(-\frac{t_r(u-U)^2}{2D}\right)$$

$$\begin{split} P(x,t) &= e^{-\chi - \tau} \Big[\frac{k_E}{V} \delta(\tau) + \frac{k_E}{V} \sqrt{\frac{\chi}{\tau}} \mathcal{I}_1(2\sqrt{\chi\tau}) + \frac{k_D}{V} \mathcal{I}_0(2\sqrt{\chi\tau}) \\ &+ \frac{k_E k_D}{kV} \sqrt{\frac{\tau}{\chi}} \mathcal{I}_1(2\sqrt{\chi\tau}) + \frac{k_E k_D}{kV} \delta(\chi) \Big] \theta(\chi) \theta(\tau) \end{split}$$

$$P(x,t) = \left[\delta(x)e^{-k_E t} + e^{-k_E t - x/\ell}\sqrt{\frac{k_E t}{\ell x}}\mathcal{I}_1\Big(2\sqrt{\frac{k_E x t}{\ell}}\Big)\right]\theta(x)\theta(t)$$

$$\begin{split} P(x,t) &= \left[-\varphi D \partial_x^2 + V \varphi \partial_x + k + \delta(t) + \partial_t \right] \\ &\times \int_0^t \mathcal{I}_0 \Big(2 \sqrt{k_E k_D u(t-u)} \Big) e^{-k_E(t-u) - k_D u} \\ &\times \sqrt{\frac{1}{4\pi D u}} \exp \Big[-\frac{(x-Vu)^2}{4Du} \Big] du \end{split}$$

<u>Variability is ok!</u>

Thank you for listening!

Special acknowledgements to:

The most important people:

Mom, Dad, Gugs, Kelsey, Kim, Mary

Examining Committee:

Drs. Laval, Hassan, Ferreira, Eaton, Church, Beckie, Ashmore

Influential Educators: Mindy Saunders, Leo Golubovic, Tex Wood, George Wood, Jonathan Ramey, Anne Klein, many others

Geog friends:

Shawn, Matteo, Conor, Nisreen, Yinlue, Alex, Kyle, Leo, Dave, Tobias, Katie, Maria, Elli, Jiamei, Xingyu, Niannian, Emma, Will, Dave, Rose, Anya, and many others

References

Ancey, C., A. C. Davison, T. Böhm, M. Jodeau, and P. Frey, JFM, 595, 83-114, 2008.

Ancey, C., and I. Pascal, JGR:ES, 125, 1–29, 2020.

Bradley, D. N., & Tucker, G. E., ESPL, 37, 1034–1045, 2012.

Brilliantov, N. V., and T. Poschel, Kinetic Theory of Granular Gases, Oxford, UK, 2004.

Dorschner, B., N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, PRE, 94, 053311, 2016.

Einstein, H. A., Doctoral dissertation, ETH, 1937.

Fathel, S. L., D. J. Furbish, and M. W. Schmeeckle, JGR:ES, 120, 2298–2317, 2015.

Furbish, D. J., P. K. Haff, J. C. Roseberry, and M. W. Schmeeckle, JGR:ES, 117, 2012.

Horton, R. E., GSA, 56, 275-370, 1945.

Lajeunesse, E., L. Malverti, and F. Charru, JGR:ES, 115, 2010.

Lajeunesse, E., O. Devauchelle, and F. James, ESD, 6, 389–399, 2017.

Liu, M. X., A. Pelosi, and M. Guala, JGR:ES, 124, 2666–2688, 2019.

Martin, R. L., Doctoral dissertation, University of Pennsylvania, 2013.

Papangelakis, E., Master thesis, University of British Columbia, 2015.

Pretzlav, K. L. G., Doctoral dissertation, University of Texas, 2016.

Schmeeckle, M. W., J. M. Nelson, J. Pitlick, and J. P. Bennett, WRR, 37, 2377–2391, 2001.

Weiss, G. H., Aspects and Applications of the Random Walk, North Holland, Amsterdam, 1994.